RecA433 cells are defective in recF-mediated processing of disrupted replication forks but retain recBCD-mediated functions.
نویسندگان
چکیده
RecA is required for recombinational processes and cell survival following UV-induced DNA damage. recA433 is a historically important mutant allele that contains a single amino acid substitution (R243H). This mutation separates the recombination and survival functions of RecA. recA433 mutants remain proficient in recombination as measured by conjugation or transduction, but are hypersensitive to UV-induced DNA damage. The cellular functions carried out by RecA require either recF pathway proteins or recBC pathway proteins to initiate RecA-loading onto the appropriate DNA substrates. In this study, we characterized the ability of recA433 to carry out functions associated with either the recF pathway or recBC pathway. We show that several phenotypic deficiencies exhibited by recA433 mutants are similar to recF mutants but distinct from recBC mutants. In contrast to recBC mutants, recA433 and recF mutants fail to process or resume replication following disruption by UV-induced DNA damage. However, recA433 and recF mutants remain proficient in conjugational recombination and are resistant to formaldehyde-induced protein-DNA crosslinks, functions that are impaired in recBC mutants. The results are consistent with a model in which the recA433 mutation selectively impairs RecA functions associated with the RecF pathway, while retaining the ability to carry out RecBCD pathway-mediated functions. These results are discussed in the context of the recF and recBC pathways and the potential substrates utilized in each case.
منابع مشابه
recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli.
Escherichia coli containing a mutation in recF are hypersensitive to UV. However, they exhibit normal levels of conjugational or transductional recombination unless the major pathway (recBC) is defective. This implies that the UV sensitivity of recF mutants is not due to a defect in recombination such as occurs during conjugation or transduction. Here, we show that when replication is disrupted...
متن کاملRole of the RecBCD recombination pathway in Salmonella virulence.
Mutants of Salmonella enterica lacking the RecBC function are avirulent in mice and unable to grow inside macrophages (N. A. Buchmeier, C. J. Lipps, M. Y. H. So, and F. Heffron, Mol. Microbiol. 7:933-936, 1993). The virulence-related defects of RecBC(-) mutants are not suppressed by sbcB and sbcCD mutations, indicating that activation of the RecF recombination pathway cannot replace the virulen...
متن کاملRecovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function.
After UV doses that disrupt DNA replication, the recovery of replication at replication forks in Escherichia coli requires a functional copy of the recF gene. In recF mutants, replication fails to recover and extensive degradation of the nascent DNA occurs, suggesting that recF function is needed to stabilize the disrupted replication forks and facilitate the process of recovery. We show here t...
متن کاملATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage.
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPas...
متن کاملRecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli.
After UV irradiation, recA mutants fail to recover replication, and a dramatic and nearly complete degradation of the genomic DNA occurs. Although the RecBCD helicase/nuclease complex is known to mediate this catastrophic DNA degradation, it is not known how or where this degradation is initiated. Previous studies have speculated that RecBCD targets and initiates degradation from the nascent DN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutation research
دوره 645 1-2 شماره
صفحات -
تاریخ انتشار 2008